Pentcho Valev

2017-03-30 17:43:16 UTC

"Explaining the accelerating expansion of the universe without dark energy. [...] Einstein's equations of general relativity that describe the expansion of the universe are so complex mathematically, that for a hundred years no solutions accounting for the effect of cosmic structures have been found. We know from very precise supernova observations that the universe is accelerating, but at the same time we rely on coarse approximations to Einstein's equations which may introduce serious side-effects, such as the need for dark energy, in the models designed to fit the observational data." explains Dr László Dobos, co-author of the paper, also at Eötvös Loránd University. [...] Dr Dobos adds: "The theory of general relativity is fundamental in understanding the way the universe evolves. We do not question its validity; we question the validity of the approximate solutions. Our findings rely on a mathematical conjecture which permits the differential expansion of space, consistent with general relativity, and they show how the formation of complex structures of matter affects the expansion. These issues were previously swept under the rug but taking them into account can explain the acceleration without the need for dark energy." https://phys.org/news/2017-03-expansion-universe-dark-energy.html

That is, some fudge factors introduce dark energy, others provide an "explanation" without recourse to dark energy. Fudge factors belong to the essence of Einstein's general relativity:

"A fudge factor is an ad hoc quantity introduced into a calculation, formula or model in order to make it fit observations or expectations. Examples include Einstein's Cosmological Constant..." https://en.wikipedia.org/wiki/Fudge_factor

Ken Croswell, Magnificent Universe, p. 179: "Ever since, the cosmological constant has lived in infamy, a fudge factor concocted merely to make theory agree with observation." http://www.amazon.com/Magnificent-Universe-Ken-Croswell/dp/0684845946

"Some regarded the new term, known as the cosmological constant, as something of a fudge factor and claimed that it marred the symmetry and simplicity of the original field equations. However, general relativity certainly allowed the term; indeed it is a little-known fact that Einstein had noted the possibility of such an extension to the field equations in his original exposition of 1916." https://blogs.scientificamerican.com/guest-blog/einsteins-greatest-blunder/

Can one introduce a fudge factor analogous to the cosmological constant in Lorentz transformation equations? One cannot, and the reason is simple: Special relativity is DEDUCTIVE (even though a false assumption and an invalid argument have spoiled it from the very beginning) and fudging is impossible by definition - one has no right to introduce anything that does not follow from the postulates.

The only alternative to deductive theory is empirical concoction (a "theory" that is not even wrong) - Einstein clearly explains this here:

https://www.marxists.org/reference/archive/einstein/works/1910s/relative/ap03.htm

Albert Einstein: "From a systematic theoretical point of view, we may imagine the process of evolution of an empirical science to be a continuous process of induction. Theories are evolved and are expressed in short compass as statements of a large number of individual observations in the form of empirical laws, from which the general laws can be ascertained by comparison. Regarded in this way, the development of a science bears some resemblance to the compilation of a classified catalogue. It is, as it were, a purely empirical enterprise. But this point of view by no means embraces the whole of the actual process ; for it slurs over the important part played by intuition and deductive thought in the development of an exact science. As soon as a science has emerged from its initial stages, theoretical advances are no longer achieved merely by a process of arrangement. Guided by empirical data, the investigator rather develops a system of thought which, in general, is built up logically from a small number of fundamental assumptions, the so-called axioms."

Special relativity was indeed "built up logically from a small number of fundamental assumptions" but general relativity was, to use Einstein's words, "a purely empirical enterprise". Einstein and his mathematical friends changed and fudged equations countless times until "a classified catalogue" was compiled where known in advance results and pet assumptions (such as the Mercury's precession, the equivalence principle, gravitational time dilation) coexisted in an apparently consistent manner. Being an empirical concoction, general relativity allows Einsteinians to introduce, change and withdraw fudge factors until the "theory" manages to predict anything Einsteinians want. Then the prediction turns out to be confirmed by observations (surprise surprise).

The fudge-factor activity is inglorious and Einsteinians don't discuss it openly, but sometimes the truth comes out inadvertently. So conventional dark matter models based on general relativity "need four free parameters to be adjusted to explain the data" (how many fudge factors LIGO conspirators needed in order to model the nonexistent gravitational waves is a deep mystery):

https://www.newscientist.com/article/2116446-first-test-of-rival-to-einsteins-gravity-kills-off-dark-matter/

"Verlinde's calculations fit the new study's observations without resorting to free parameters – essentially values that can be tweaked at will to make theory and observation match. By contrast, says Brouwer, conventional dark matter models need four free parameters to be adjusted to explain the data."

Being an empirical concoction, Einstein's general relativity has no postulates:

https://www.quora.com/What-are-the-postulates-of-General-Relativity

What are the postulates of General Relativity? Alexander Poltorak, Adjunct Professor of Physics at the CCNY: "In 2005 I started writing a paper, "The Four Cornerstones of General Relativity on which it doesn't Rest." Unfortunately, I never had a chance to finish it. The idea behind that unfinished article was this: there are four principles that are often described as "postulates" of General Relativity:

1. Principle of general relativity

2. Principle of general covariance

3. Equivalence principle

4. Mach principle

The truth is, however, that General Relativity is not really based on any of these "postulates" although, without a doubt, they played important heuristic roles in the development of the theory." [end of quotation]

General relativity is analogous to the "empirical models" defined here and is as much a theory as they are:

http://collum.chem.cornell.edu/documents/Intro_Curve_Fitting.pdf

"The objective of curve fitting is to theoretically describe experimental data with a model (function or equation) and to find the parameters associated with this model. Models of primary importance to us are mechanistic models. Mechanistic models are specifically formulated to provide insight into a chemical, biological, or physical process that is thought to govern the phenomenon under study. Parameters derived from mechanistic models are quantitative estimates of real system properties (rate constants, dissociation constants, catalytic velocities etc.). It is important to distinguish mechanistic models from empirical models that are mathematical functions formulated to fit a particular curve but whose parameters do not necessarily correspond to a biological, chemical or physical property."

Pentcho Valev

That is, some fudge factors introduce dark energy, others provide an "explanation" without recourse to dark energy. Fudge factors belong to the essence of Einstein's general relativity:

"A fudge factor is an ad hoc quantity introduced into a calculation, formula or model in order to make it fit observations or expectations. Examples include Einstein's Cosmological Constant..." https://en.wikipedia.org/wiki/Fudge_factor

Ken Croswell, Magnificent Universe, p. 179: "Ever since, the cosmological constant has lived in infamy, a fudge factor concocted merely to make theory agree with observation." http://www.amazon.com/Magnificent-Universe-Ken-Croswell/dp/0684845946

"Some regarded the new term, known as the cosmological constant, as something of a fudge factor and claimed that it marred the symmetry and simplicity of the original field equations. However, general relativity certainly allowed the term; indeed it is a little-known fact that Einstein had noted the possibility of such an extension to the field equations in his original exposition of 1916." https://blogs.scientificamerican.com/guest-blog/einsteins-greatest-blunder/

Can one introduce a fudge factor analogous to the cosmological constant in Lorentz transformation equations? One cannot, and the reason is simple: Special relativity is DEDUCTIVE (even though a false assumption and an invalid argument have spoiled it from the very beginning) and fudging is impossible by definition - one has no right to introduce anything that does not follow from the postulates.

The only alternative to deductive theory is empirical concoction (a "theory" that is not even wrong) - Einstein clearly explains this here:

https://www.marxists.org/reference/archive/einstein/works/1910s/relative/ap03.htm

Albert Einstein: "From a systematic theoretical point of view, we may imagine the process of evolution of an empirical science to be a continuous process of induction. Theories are evolved and are expressed in short compass as statements of a large number of individual observations in the form of empirical laws, from which the general laws can be ascertained by comparison. Regarded in this way, the development of a science bears some resemblance to the compilation of a classified catalogue. It is, as it were, a purely empirical enterprise. But this point of view by no means embraces the whole of the actual process ; for it slurs over the important part played by intuition and deductive thought in the development of an exact science. As soon as a science has emerged from its initial stages, theoretical advances are no longer achieved merely by a process of arrangement. Guided by empirical data, the investigator rather develops a system of thought which, in general, is built up logically from a small number of fundamental assumptions, the so-called axioms."

Special relativity was indeed "built up logically from a small number of fundamental assumptions" but general relativity was, to use Einstein's words, "a purely empirical enterprise". Einstein and his mathematical friends changed and fudged equations countless times until "a classified catalogue" was compiled where known in advance results and pet assumptions (such as the Mercury's precession, the equivalence principle, gravitational time dilation) coexisted in an apparently consistent manner. Being an empirical concoction, general relativity allows Einsteinians to introduce, change and withdraw fudge factors until the "theory" manages to predict anything Einsteinians want. Then the prediction turns out to be confirmed by observations (surprise surprise).

The fudge-factor activity is inglorious and Einsteinians don't discuss it openly, but sometimes the truth comes out inadvertently. So conventional dark matter models based on general relativity "need four free parameters to be adjusted to explain the data" (how many fudge factors LIGO conspirators needed in order to model the nonexistent gravitational waves is a deep mystery):

https://www.newscientist.com/article/2116446-first-test-of-rival-to-einsteins-gravity-kills-off-dark-matter/

"Verlinde's calculations fit the new study's observations without resorting to free parameters – essentially values that can be tweaked at will to make theory and observation match. By contrast, says Brouwer, conventional dark matter models need four free parameters to be adjusted to explain the data."

Being an empirical concoction, Einstein's general relativity has no postulates:

https://www.quora.com/What-are-the-postulates-of-General-Relativity

What are the postulates of General Relativity? Alexander Poltorak, Adjunct Professor of Physics at the CCNY: "In 2005 I started writing a paper, "The Four Cornerstones of General Relativity on which it doesn't Rest." Unfortunately, I never had a chance to finish it. The idea behind that unfinished article was this: there are four principles that are often described as "postulates" of General Relativity:

1. Principle of general relativity

2. Principle of general covariance

3. Equivalence principle

4. Mach principle

The truth is, however, that General Relativity is not really based on any of these "postulates" although, without a doubt, they played important heuristic roles in the development of the theory." [end of quotation]

General relativity is analogous to the "empirical models" defined here and is as much a theory as they are:

http://collum.chem.cornell.edu/documents/Intro_Curve_Fitting.pdf

"The objective of curve fitting is to theoretically describe experimental data with a model (function or equation) and to find the parameters associated with this model. Models of primary importance to us are mechanistic models. Mechanistic models are specifically formulated to provide insight into a chemical, biological, or physical process that is thought to govern the phenomenon under study. Parameters derived from mechanistic models are quantitative estimates of real system properties (rate constants, dissociation constants, catalytic velocities etc.). It is important to distinguish mechanistic models from empirical models that are mathematical functions formulated to fit a particular curve but whose parameters do not necessarily correspond to a biological, chemical or physical property."

Pentcho Valev